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Abstract
The contributions of N. G. de Bruijn to regular variation, and recent

developments in this �eld, are discussed. A new version of the Uniform Con-
vergence Theorem is given.

1. Introduction: the Uniform Convergence Theorem of regular
variation
The theory of regular variation originates with Jovan Karamata (1902-

1967) in 1930 [Kar2], and concerns the extensive consequences of limit rela-
tions of the form

f(tx)=f(x)! g(t) 2 (0;1) (x!1) 8 t > 0; (RV )

written multiplicatively, or

h(t+ x)� h(x)! k(t) 2 R (x!1) 8 t 2 R; (RV+)

written additively.
Karamata worked with continuous functions. The modern era of the sub-

ject began with the path-breaking paper by three Dutch mathematicians,
Korevaar1, van Aardenne-Ehrenfest2 and de Bruijn [KorvAEdB]. The con-
text was broadened to its natural setting, measurability. Here we �nd the
main theorem of the subject, the Uniform Convergence Theorem (UCT): un-
der measurability, the convergence in (RV ) is uniform on compact t-sets in
(0;1). This result is so important that many proofs have been given; see
[BinGT] (BGT below) 1.2 for six, and [BOst5] for more.
From (RV+) (it is convenient to work additively in proofs),

k(t+ u) = k(t) + k(u): (CFE)

That is, k is an additive function. It satis�es the Cauchy functional equa-
tion. As is well known (see e.g. [Kuc]), additive functions exhibit a sharp

1Jacob (Jaap) Korevaar (1923-), author of the modern classic [Kor] on Tauberian the-
orems

2T. van Aardenne-Ehrenfest (1905-1984); see de Bruijn�s memorial article [dB3]
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dichotomy: they are either continuous (whence easily seen to be of the ob-
vious form k(x) � �x for some �), or pathological (in particular, unbounded
above and below on any interval, or set of positive measure, or even less
�see [BinO10]). Discontinuous additive functions may be manufactured in
great profusion from Hamel bases of the reals over the rationals (see e.g.
BGT 1.1.4 and the recent [DorFN]). Subject to enough regularity to avoid
this Hamel pathology, one has k(x) � �x in (RV+), or g(x) � x� in (RV )
(Characterisation Theorem: BGT, 1.4; cf. §11.6).
As well as analysis and Tauberian theory, other areas of application of

regular variation include probability theory (BGT Ch. 8; [Bin1], [Bin2]) and
analytic number theory ([dBvL]; BGT Ch. 6).

2. The Representation Theorem
Second only in importance to the UCT is another result of Karamata

(continuous case), Korevaar, van Aardenne-Ehrenfest and de Bruijn [Kor-
vAEdB] (measurable case), the Representation Theorem (BGT 1.3) for reg-
ularly varying functions:

h(x) = �x+ d(x) +

Z x

0

e(u)du; (d(:)! d; e(:)! 0)

(as is customary, we use two functions here for convenience, with non-uniqueness
in representation), or in multiplicative notation

f(x) = x�`(x); `(x) = c(x) expf
Z x

1

�(u)du=ug;

c(:)! c 2 (0;1); �(:)! 0

(here e; � are continuous, but may be taken to be as smooth as we wish �
see below). Here � 2 R is called the index of regular variation; the set of
such functions f is R�, the class of functions regularly varying with index
�. So ` 2 R0; ` is called slowly varying (` for lente, or langsam). Such
Karamata representations are inherently non-unique: one can adjust one of
c(:) and �(:) at the cost of compensating adjustment to the other. Since �(:)
appears inside an integral, smoothness is more desirable here than for c(:).
Indeed, one is often interested in f only to within asymptotic equivalence;
c(:) need not even be measurable, and one can replace it by its limit c. Thus
the smoothness of f is governed by that of c(:).
For most purposes, one can take �(:) to be as smooth as one wishes �C1,
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for example. For the resulting theory of smooth variation, see BGT 1.8. This
rests on work of another trio of Dutch mathematicians, Balkema, Geluk and
de Haan [BalGdH], which in turn uses work by de Bruijn [dB2] of 1959 (in
recognition of which [BinO5] refers to �de Bruijn�s representation theorem�).
De Bruijn was concerned with the inversion of asymptotic relations �if

f(g(x)) � x (x!1);

how to pass between asymptotic properties of f to those of g. He also ob-
tained Tauberian theorems of exponential type (see e.g. BGT 7.12, where
the three cases are called the Tauberian theorems of Kohlbecker, Kasahara
and de Bruijn �though in fact de Bruijn [dB2] considered all three cases;
cf. [dB1], Ch. 4). These occur in various areas, including duality theory in
convex analysis. But one of the most important is in probability theory, in
connection with the theory of large deviations; see [Bin3] and the references
cited there.

3. Category-measure duality
In measure theory, the null sets are the small sets. In topology, one en-

counters the Baire category theorem. Here, the small sets are the meagre sets
(sets of the �rst category). For a monograph treatment of the extensive links
and parallels between measure and category, see the classic �Oxtoby [Ox].
Matuszewska [Mat] showed in 1964 that one could develop a theory of

regular variation, imposing a topological restriction � that functions have
the Baire property (brie�y, be �Baire�) �rather than the measure-theoretic
restriction of measurability. One can obtain the UCT, Representation, Char-
acterisation Theorem and the other main results of the theory, but in a topo-
logical setting, with meagre sets playing the role of null sets. In BGT, the
two theories are developed in parallel, with the measurable case treated as
the principal one, following the historical development. But note that neither
of the measurable and Baire cases contains the other.
It turns out that in fact it is the category theory which is the principal

one. One can develop the two theories as one, working bi-topologically, with
the Baire case when one imposes the usual (Euclidean) topology, and the
measurable one when one imposes the density topology. This is the topology
obtained by calling a set open if all its points are density points (in the sense
of the Lebesgue density theorem �that almost all points of a measurable set
are density points). That such a development might be possible is suggested
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by results such as that a set has the Baire property under the density topol-
ogy i¤ it is (Lebesgue) measurable (see e.g. Kechris [Kec], (17.47.iv) p.119).
This insight is the basis of the theory of topological regular variation, de-

veloped extensively in recent years by the present authors. See in particular
[BinO1], [BinO7] for category-measure aspects.

4. The theorems of Steinhaus and Ostrowski
The theorem of Steinhaus (from 1920; BGT Th. 1.1.1) �the foundation

stone of regular variation � states that for a measurable set A of positive
measure, the di¤erence set A � A := fa1 � a2 : ai 2 Ag contains a neigh-
bourhood of the origin. This has been much generalised �to the Baire case
(Piccard, 1939), by Pettis (1950, 1951), and many others. From this, one
obtains the theorem of Ostrowski (from 1929; BGT Th. 1.1.7, Th. 1.1.8;
the Baire case is due to Mehdi in 1964), which gives the above-mentioned
dichotomy for solutions to the Cauchy functional equation. From these, the
theory may be developed as in BGT. From Th. 1.1.8 a discontinuous additive
function is neither Lebesgue-measurable nor has the property of Baire. But,
under assumptions consistent with ZFC, it may be Marczewski-measurable
[DorFN]. The broader context here is �negligibility�: see [BreL] for �-ideals
motivated by forcing, and for topological aspects [Ost3].
In the Steinhaus and Piccard theorems, the relevant dichotomy is that

the di¤erence set is either topologically small (has empty interior), or topo-
logically large (contains a neighbourhood of the origin). The general context
is that of topological groups ([BajK]; cf. [Bal]). One can also work with
normed groups [BinO6]. Here the dichotomy takes the form: normed groups
are either topological or pathological. We note that the real line under the
density topology is not a topological group.
The Ostrowski and Baire-Mehdi theorems exhibit the dichotomy above:

additive functions are either (continuous and so) linear (�x) or pathologi-
cal. As results of this type date back to Darboux in 1875, one may call this
the Darboux dichotomy. The general context is that of automatic continu-
ity (§11.6): here the merest hint of regular behaviour ensures full regularity
[BinO10].
The proofs here involve algebraic results concerning additive subgroups

of the reals. Such a subgroup is either very small in some sense (in partic-
ular, has in�nite index), or is the whole of the reals. One may call this the
subgroup dichotomy.
A comprehensive examination of results of this kind was recently given in
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[BinO11], from the point of view of in�nite combinatorics; see also [BinO6].
In particular, the subgroup dichotomy is relevant to the area of Ramsey the-
ory [BinO8].

5. The foundational question
Shift-compactness derives from probability theory on algebraic and topo-

logical structures (see e.g. Parthasarathy [Par, III.2], Heyer [Hey]), the idea
being that one may obtain compactness (say, sequential compactness, in a
metric-space setting) after suitable shifts. We note that, in the crucially rel-
evant case of the reals under the density topology, translation is continuous,
but addition is not. Thus one has good behaviour with one argument, but not
with two. This suggests that group actions, rather than topological groups
themselves, may be the natural framework here. It is, and this brings in the
viewpoint of topological dynamics [Ost2]. Also relevant here are questions
of separate versus joint continuity. The prototypical result here is E¤ros�
theorem. For background and references, we refer to Miller and Ostaszewski
[MilO] and [Ost5].
The �rst major question left open in BGT was the foundational question

(BGT, 1.2.5 p.11): what is the minimal common generalisation of measur-
ability and the Baire property that su¢ ces for the foundations of regular
variation � the three principal results, the UCT, the Representation The-
orem and the Characterisation Theorem? This question was answered in
[BinO4], in terms of the Kestelman-Borwein-Ditor theorem of in�nite com-
binatorics (from results of Kestelman in 1947, Borwein and Ditor in 1978),
and the No Trumps property, NT (the term derives from bridge, following on
from Ostaszewski�s club | [Ost1], itself following on from Jensen�s diamond,
}) �see §6.
The No Trumps property was abstracted from several of the proofs of

UCT given in BGT 1.2. These used proof by contradiction, obtaining a
sequence witnessing to the contradiction, and extracting from it a suitable
subsequence, all of whose members satis�ed some condition. The Kestelman-
Borwein-Ditor theorem is of this type. It turns out that one can often work
�generically�, obtaining the desired property �quasi-everywhere��everywhere
o¤ a �negligible�set (meagre in the Baire case, null in the measure case); see
[BinO2] for results of this type in a function-space setting. The main result
of [BinO2] is there called the Category Embedding Theorem, a tool used in
our subsequent papers.
These ideas motivate the theory of shift-compactness, which subsumes
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them. We refer for detail to [MilO] and [Ost4]. Section 6 below illustrates
these with a new result.

6. UCT on the L1-algebra of a locally compact metric group G
The UCT is the main result in the classical theory of slow and regular

variation, and as above many proofs are known. In [BinO4], [BinO5] Parts
I & II, the theory is developed in the context of homogeneous spaces, and
in particular of topological groups (as homogeneous spaces acting on them-
selves); there the action is transitive by homogeneity. Here we have G a
locally compact metric group and work on L1(G) with its natural action, but
now the action need not be transitive.
The notation in the Introduction de�ning slow variation in the form (RV )

may be easily re-interpreted for a function h with domain a metric space X
and values in a topological group H when the multipliers t in (RV ) come
from a topological group G acting on X; just so long as one has a notion of
convergence �at in�nity�giving meaning to

h(tx�)h(x�)
�1 ! g(t) (t 2 G);

or in an abelian context h(tx�) � h(x�) ! k(t): For example, x� may run
through a �divergent�sequence xn in X, or a divergent net (i.e., �x ! 1�,
rather than x ! 1; the group identity when X itself is a group, as in ap-
proximate identities �for which see e.g. [Rick], p. 3 and A.3.1). From this
perspective, when X = G and both are R, regarded as an additive group, a
divergent net is provided by ordering the reals in ascending order.
We now develop an L1(G)-regular variation theory, then deduce a cor-

responding version of the UCT. Let G be a locally compact metric group
equipped with a (left) Haar measure �: (In the Representation Theorem in
§7 below we will specialize to the �-compact, so separable, case.) Take the
domain and range of regularly varying functions to be X = L1(G; �); re-
garded as the Banach algebra of �-integrable functions x : G ! R under
convolution. Thus jjxjj1 =

R
jx(g)jd�(g): The group G de�nes a natural

action on X; namely � : G�X ! X; where

(g � x)(t) := x(g�1t):
That is, (gh) � x = g � (h � x) and 1G � x = x (cf. [HewR, Ch.5], [Pat, Ch.4]).
The map g 7! g � x is continuous, since continuity on a compact set implies
uniform continuity and because

jjg � x� h � xjj1 = jjh�1g � x� xjj1:
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We note the group action is isometric, i.e. jjg � x � g � yjj1 = jjx � yjj1: We
now recall and adapt for the present context some de�nitions from [BinO4],
cf. [BinO6, §7].

De�nitions. 1. Call z := fzng a null-sequence in G if zn ! 1G:
2. Say the map h : X ! X has the NT-property w.r.t. the sequence
x : = fxng if for each " > 0 the family fT "k (x) : k 2 !g has the following
shift-compactness property: for each null sequence z there are k 2 !; t 2 G
and M an in�nite set such that:

tzm 2 T "k (x) for m 2M;

where
T "k (x) :=

\
n�k
fg : jjh(g � xn)� h(xn)jj1 < "g:

3. Call the map h : X ! X slowly varying (w.r.t. the net x : = fx�g) if

lim� jjh(g � x�)� h(x�)jj1 = 0; for each g 2 G: (SV )

(In applications, the nets may be required to satisfy additional conditions �
see the �regular nets�below. For the connection between slow variation along
a net and slow variation with a continuous limit, see e.g. [BinO4, Th. 5 �
Equivalence Theorem].)
4. As before, say the map h : X ! X is Baire if h�1 takes open sets to sets
with the Baire property. Say that h : X ! X is Baire relative to convolution
if the maps hx : G! X de�ned by hx(g) := h(g � x) are Baire for all x o¤ a
meagre set, the exceptional set Eh of h:

Wewill see below that continuous h are Baire relative to convolution (with
no exceptional set); Baire functions h are also Baire relative to convolution
but with an exceptional set that need not be empty.

Lemma 1. For h : X ! X continuous, h is Baire relative to convolution
with empty exceptional set Eh. In particular, for x any sequence, the sets
T "k (x) are Baire (have the Baire property).

Proof. Since g 7! g � x is continuous (as noted earlier), the maps hx(g) :=
h(g � x) are also continuous. Put hn(g) := h(g � xn); again continuous. So
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for each n; the level set H"
n(x) := fg : jjh(g � xn) � h(xn)jj1 < "g takes the

form h�1n [Bh(xn)(")] for Bx(") the ball of radius " centred at x in X; and being
open is Baire. Hence so is T "k (x) =

T
n�kH

"
n(x): �

Remark. For h continuous, as hn is continuous, H"
n(x) is open and so in

fact each set T "k (x) is a G�:

Lemma 2. If h : X ! X is Baire relative to convolution and slowly varying
w.r.t. a sequence x : = fxng, with each xn =2 Eh; then h has the NT-property
w.r.t. x.
In particular, any continuous function h : X ! X that is slowly varying

w.r.t. any sequence x : = fxng has the NT-property w.r.t. x.

Proof. For " > 0; one has by de�nition that

G :=
[

k2N
T "k (x):

As h is Baire relative to convolution and each xn =2 Eh each function hn(g) :=
h(g � xn) is Baire and so each T "k (x) is Baire. So, since G is topologically
complete, there is k with T "k (x) non-meagre and Baire, as h is Baire relative
to convolution. It now follows ([BinO6], Cor. 6.4 �shift-compactness, in the
language of [MilO]) that if z is null, then for quasi-all t 2 T "k (x) there is an
in�nite set M such that

tzm 2 T "k (x) for m 2M:

Specializing to h continuous, by Lemma 1 Eh is empty; so x may be
arbitrary. �

De�nition. For V dense open in X; say that x 2 X is a regular point for V
(under the group action) if the (open) set

Gx(V ) := fg 2 G : g � x 2 V g

is dense open in G.
It is possible for Gx to be non-dense. However, this is rare:

Proposition 1. For G separable and V dense open in X, quasi-all points
of X are regular for V .
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Proof. For G separable let fdn : n = 1; 2; :::g be a countable dense subset
of G. For m;n = 1; 2; :::; put Bm;n := B(dn; 1=m); where B(d; r) is the open
ball of radius r in G:
For B � G put B � V := fb � v : b 2 B & v 2 V g and b � V := fbg � V ; so

B �V =
S
b2B b�V is dense open for V dense open. Indeed for V dense open

in X, b � V is already dense open, since convolution is isometric (see above).
Now Gx; as above, is dense open i¤ each Bm;n meets Gx; i.e. for eachm;n

some g 2 Bm;n has the property that g �x 2 V; equivalently x 2 B�1m;n �V for
each m;n: Equivalently, Gx is dense open i¤

x 2 R(V ) :=
\

m;n
B�1m;n � V:

Now R(V ) is a dense G� in X and so co-meagre, as X = L1(G) is complete;
all its members are regular for V . �

Proposition 2. For G separable and h : X ! X Baire, there is a meager
set Eh in X such that
(i) hx is Baire for each x in the co-meagre set R := XnEh;
(ii) if h is slowly varying w.r.t. a sequence x : = fxng, with each xn 2 R,
then h has the NT-property w.r.t. x.

Proof. (i) As h : X ! X is Baire, and X is separable, for some co-meagre
Y the function hY := hjY is continuous (see [Oxt], Th. 8.1]). Denoting by
�x the map g 7! g � x; one has

Gx(Y ) = �
�1
x (Y ) := fg 2 G : g � x 2 Y g:

By passing to a subset, if necessary, w.l.o.g. we may assume that Y =
T
n Vn

with each Vn dense open in X. For any x in X; the map �x is continuous
from G to X and so again each set Gn := Gx(Vn) = fg 2 G : g � x 2 Vng is
open in G: Thus

Gx := fg 2 G : g � x 2 Y g =
\

n
fg 2 G : g � x 2 Vng

is a G�:
Put R :=

T
nR(Vn); then R is co-meagre, since each set R(Vn) is co-

meagre.
Every x 2 R is a regular point point for each Vn. So for x 2 R the set

Gx is co-meagre. Moreover, for g 2 Gx; we have �x(g) 2 Y so

hx(g) = h(g � x) = hY (�x(g));
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so hxjGx is continuous on Gx; as a composition of continuous functions. As
Gx is co-meagre, hx is Baire (again [Oxt, Th. 8.1]).
By (i) the assertion (ii) follows from Lemma 2. �

Remark. Of course if h : X ! X is Baire and is a homomorphism, then h
is continuous.

We now prove the promised uniform convergence in the context of a group
action that is is not necessarily transitive. Here the weaker assumption on
the action extracts a price: slow variation is de�ned relative to regular nets,
i.e. nets consisting of points avoiding a speci�ed meagre set � in order to
secure the Baire property for the maps hx. We are grateful to the Referee for
the illuminating example of the horizontal shift action by R on R� R (that
is t � (x; y) = (x + t; y)) and a Baire self-map of R� R with h(0; :) : R! R
wild, and otherwise h(u; v) = (0; 0); for which hx(t) = 0 for all vectors x;
except the meagre set of vectors x = (0; v) for which h(0;v)(t) is wild. Recall
(BGT §2.9) the occurrence of other exceptional sets in regular variation.

De�nition. For Baire h : X ! X; say that h is slowly varying with respect
to regular nets if it is slowly varying w.r.t. nets fx�g with all x� =2 Eh; here
Eh is the meagre set of Proposition 2 corresponding to h.

Theorem (UCT for L1(G)). For G a locally compact metric group with
Haar measure � and X = L1(G):
(i) for G separable (i.e. �-compact), if h : X ! X is Baire and slowly

varying w.r.t. regular nets, then the convergence in (SV ) is uniform on
compacts;
(ii) for general G; uniform convergence in (SV ) holds for h continuous

and slowly varying w.r.t. arbitary nets.

Proof. As usual with proofs of the UCT we proceed by contradiction. Sup-
pose that h is Baire and slowly varying but that uniform convergence fails
w.r.t. some regular net fy�g. Then there is a compact set K and " > 0 such
that for each � there is � = �(�) � � and a point g� 2 G with

jjh(g� � y�)� h(y�)jj1 > 3":

As K is a compact, the subnet fg�(�)g has a cluster-point u: As G is metric,
there is a sequence un = g�(�n) converging to u: Put xn := y�(�n) and zn :=
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u�1un; then fzng is null and un = uzn. Thus, for each n; one has

jjh(un � xn)� h(xn)jj1 > 3": (1)

By Proposition 2, we may pick k 2 !; t 2 G and M an in�nite set such
that

tzm 2 T "k (x) for m 2M:
So for n > k and m 2 M one has jjh(tzm � xn) � h(xn)jj1 < "; and so in
particular if n > k and n 2M one has

jjh(tzn � xn)� h(xn)jj1 < ": (2)

By convergence at u and t; there is N > k; such that for all n > N one has

jjh(u � xn)� h(xn)jj1 < "; and jjh(t � xn)� h(xn)]jj1 < ": (3)

Combining, for n > N with n 2M, we have

jjh(un � xn)� h(xn)jj1
� jjh(u � zn � xn)� h(zn � xn)jj1 + jjh(zn � xn)� h(xn)jj1
= jjh(u � zn � xn)� h(zn � xn)jj1 + jjh(tzn � xn)� h(xn)� [h(tzn � xn)� h(zn � xn)]jj1
� jjh(u � zn � xn)� h(zn � xn)jj1 + jjh(tzn � xn)� h(xn)jj1 + jjh(tzn � xn)� h(zn � xn)]jj1
= jjh(u � xn)� h(xn)jj1 + jjh(tzn � xn)� h(xn)jj1 + jjh(t � xn)� h(xn)]jj1
� 3";

contradicting (1). �

7. From UCT to the Representation Theorem

The group-action approach in §6 opens a new perspective on the Repre-
sentation Theorem of §2, permitting its extension fromR to a locally compact
metric group G (�-compact in the representation theorem below, but this is
not needed in the UCT below) equipped with a left-invariant metric dG (cf.
the Birkho¤-Kakutani Theorem [HewR, Th. 8.3]). The de Bruijn proof of
BGT 1.3 remains the paradigm, but now needs to be based on an appropri-
ate UCT. Such a UCT can be derived using the proof of the UCT of §6 by
reinterpreting slow variation of h : G! R at in�nity now to mean that

jh(gx)� h(x)j ! 0 as dG(x; 1G)!1; for each g 2 G: (SV -G)
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This easily yields the following.

Theorem (UCT). For G a locally compact metric group with left-invariant
metric dG; if h : G ! R is Baire and slowly varying, then the convergence
in (SV -G) is uniform on compacts.

The metric dG is said to be proper if all the closed balls �Bx(r) := fy :
dG(x; y) � rg are compact, i.e. the metric has the Heine-Borel property:
closed and bounded is equivalent to compact. (In geodesic geometry a proper
metric space is called ��nitely compact�, since an in�nite bounded set has a
point of accumulation � see [Bus], or [BridH] for a more recent text-book
account of the extensive use of this concept.)

The UCT above leads in this context to the following generalization of
the Representation Theorem for regularly varying functions, those for which,
working additively,

h(gx)� h(x)! k(g) as dG(x; 1G)!1; for each g 2 G:

See [BinO5, Part II] for a smooth extension to Euclidean spaces; in the
current context one can only demand continuity.

Theorem (Karamata-de Bruijn Representation). For G a �-compact
group with left Haar measure � and left-invariant proper metric dG, if h :
G ! R is Baire and regularly varying, then there are a homomorphism � :
G ! R, a continuous function e : G ! R vanishing at in�nity, and a
function d : G! R convergent at in�nity such that

h(x) = �(x) + d(x) +

Z
�Bx

e(g)d�(g);

where as above �Bx denotes the closed ball centered at 1G of radius dG(x; 1G):

Of course, in the locally compact setting above (needed to have a Haar
measure), �-compactness (�-�niteness here) is equivalent to separability. In
§8 below, local compactness gives us Haar measure, but as we shall see, even
without this we still have a concept of Haar-null set, and this is crucially
useful �see [Sol] and the end of §8 below.

8. Amenability
Our purpose here is to make connections via regular variation between
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Steinhaus theory and amenability theory. Uniformity is built into regular
variation, via the UCT, a new form of which we gave in §6 above. Uniformity
is also built into amenability (a very important subject in the theory of
topological groups: the term is meant to convey both its ordinary meaning,
and �mean-able��existence of an invariant mean; for background, see the
standard work by Paterson [Pat]). The Reiter and Følner conditions (below)
are each equivalent to amenability; each holds uniformly on compacta when
it holds pointwise. A second link comes via the Steinhaus Theorem (§4),
on which the theory of regular variation is built. On a locally compact
topological group one has a Haar measure, whose null sets can be thought
of as the small or negligible sets. In fact, one may still be able to talk
about Haar-null sets even when one has neither local compactness nor Haar
measure. There is still a Steinhaus theorem in such contexts; this involves
Solecki�s concept of amenability at 1 [Sol] (below).
We shall show how, in a locally compact metric group G; the (uniform)

Reiter condition of amenability theory may be deduced via UCT from its
pointwise version; to be precise, for G again a locally compact metric group
with left Haar measure � and L1(G; �) norm jj:jj1, denote the non-negative
densities by P (G) := fy 2 L1(G) : y � 0;

R
yd� = 1g and say that the (weak)

Reiter condition ([Pat, Prop. 0.4]) holds for a net fx�g in P (G) if

jjg � x� � x�jj1 ! 0 for each g 2 G. (R)

In our context, this then holds uniformly on compact sets:

jjg � x� � x�jj1 ! 0 on compact sets of g 2 G, (UR)

cf. [Pat] Prop. 4.4. The Reiter condition (R) is equivalent to amenability.
(An invariant mean can be extracted as any weak* cluster-point of the net
fx̂�g; where x̂ represents x in the second dual L1(G)00 = L1(G)0.)
A more common condition equivalent to amenability is the Følner condi-

tion
�(gK�4K�)=�(K�)! 0 for each g 2 G (F )

(here nets of non-null compacts K� may be replaced by sequences when the
group G is �-compact) �see [Pat] Ch. 4, esp. Prop. 4.10. This too holds
uniformly on compact g-sets (condition UF ):

�(gK�4K�)=�(K�)! 0 uniformly for g in compact sets. (UF )
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An alternative form of the Følner condition is: for each " > 0 and compact
subset C there is a non-null compact subset K such that

�(gK4K)=�(K) < "; for all g 2 C: (F 0)

Condition (R) reduces to (F ) upon taking

x�(t) = 1K�
(t)=�(K�):

For G locally compact metric, the deduction of (UR) from (R) is imme-
diate on applying the UCT of §6 to the identity mapping h(x) = x; which is
continuous.

Remark. This result allows a restatement of the Reiter condition for a
locally compact group G in a measure-theoretic format in two ways. The
�rst is the standard result ([Pat] Prop. 4.2) that G is amenable i¤ there is a
net fx�g in P (G) such that

jj� � x� � x�jj1 ! 0 for every Borel probability measure � on G:

The second is the following Reiter-like condition ([Sol] §2 p. 699): for any
Borel probability measure � on G and " > 0 there is a Borel probability
measure � such that for any compact subset K

j(� � �)(K)� �(K)j < ": (S)

This latter condition motivates a de�nition which is appropriate for a
Polish group G which is not locally compact. Although Haar measure, i.e. a
(left) translation-invariant, locally �nite Borel measure, does not then exist
on G, nevertheless, an analogue of the sets of Haar-measure zero can be
developed. A subset N is (left) Haar-null if it is contained in a universally
measurable set B and there is a Borel probability measure � on G such that
�(gB) = 0 for all g 2 G: To study these Solecki introduced the following
concept.

De�nition. A Polish (topological) group G is amenable at 1 if for any se-
quence of Borel probability measures �n all having 1G in their support, there
exist Borel probability measures �n and �; with �n absolutely continuous
w.r.t. �n; such that for all compact K � G

limn(� � �n)(K) = �(K):
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That is, � � �n converges weakly to �, for which see [Par, II.6].

Solecki [Sol, Prop. 1] proves that in a Polish group which is amenable
at 1, the Haar-null sets form a proper �-ideal; furthermore, a universally
measurable subset A that is not Haar-null has the Steinhaus property, that
is: 1G is in the interior of A�1A: The list of groups with this property [Sol,
Prop 3.3] includes abelian Polish groups, locally compact second-countable
groups, and countable products of the latter provided all but �nitely many
of them are amenable. See also §11.5.
Again there is here a connection with shift-compactness �we hope to

return to this matter elsewhere.

9. The contextual question: beyond the reals
The classical theory of regular variation, as expounded in BGT, was de-

scribed in the preface there as �a chapter in classical real-variable theory�.
But in BGT Appendix 1, several more general settings are brie�y described.
This raises the contextual question: what is the natural setting for regular
variation?
In the probabilistic setting of extreme-value theory (EVT �see below),

one studies maxima, say of �ood heights. The basic setting is one-dimensional
(height at a given coastal station, or price of a risky stock), but �nite-
dimensional settings are crucially important (heights at a number of coastal
stations; prices of stocks in a portfolio of risky assets), and in�nite-dimensional
settings such as function spaces (heights along a threatened coastline). As we
have seen above, topological groups and normed groups also provide settings
in which the theory can be developed; see [BinO6] and the references cited
there.

10. Discrete and continuous limits
The limits in (RV ), (RV+) are continuous limits. But the proofs of the

UCT by contradiction are sequential, starting from a sequence witnessing
to the contradiction and proceeding by �nding a suitable subsequence. Fur-
thermore, countability is built into the de�nition of a measure, and hence of
measurability, and into the de�nition of Baire category.
It has long been known that one can build a sequential theory of regular

variation; see BGT 1.9 for details and references.
The question of whether limits are discrete or continuous is linked to that

of weakening the quanti�er 8 in (RV ), (RV+) ([BinG], I).
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The setting of (RV ) (Karamata theory) can be extended to that of

(f(tx)� f(x))=g(x)! h(x) (x!1) 8 t > 0 (deH)

(de Haan theory); see BGT Ch. 3. It had long been intriguing why the
proof of the main result on weakening the quanti�er for Karamata theory
(BGT, Th. 1.4.3, p.19) should be so hard, and no easier than that of the
corresponding theorem for de Haan theory (BGT Th. 3.2.5, p.141). The
answer to this emerged in the recent study [BinO11]. See [BinO8] for details,
of both category methods and links with in�nite combinatorics �including
such classic results as van der Waerden�s theorem.
We note that one can develop a fruitful theory of regular variation in

which limits need not exist (see BGT Ch. 2). Results of this type are
harder, as although measurability is preserved under sequential limits, it is
not preserved under upper or lower limits. A detailed study of the extent of
the degradation that can result here was given in [BinO9], using the language
of descriptive set theory.

11. Remarks
1. Tauberian theorems. Karamata [Kar1] created a sensation in 1930 by his
short proof of the Hardy-Littlewood Tauberian theorem for Laplace trans-
forms. His method of proof was based on polynomial approximation. Us-
ing his new theory of regular variation [Kar2], also of 1930, he was able
to extend the result, to its modern form, the Hardy-Littlewood-Karamata
theorem [Kar3]. For textbook accounts, see BGT Ch. 4, [Kor], IV (Kara-
mata�s heritage: regular variation). It was through Korevaar�s interest in
both Tauberian theorems and regular variation that de Bruijn entered this
�eld in [KorvAEdB].
2. Zorn�s lemma. The Hamel pathology of §1 depends on Hamel bases �bases
for the real numbers (as vectors) over the rationals (as ground �eld). As is
well known, that all vector spaces have a basis is equivalent to the Axiom of
Choice (AC), itself equivalent to Zorn�s lemma. Recall that, while in general
a subset of the reals is non-measurable, exhibiting one requires some form
of AC, as in the classic example by Vitali. That the UCT is false without
some regularity condition such as measurability was shown in the original
paper by Korevaar, van Aardenne-Ehrenfest and de Bruijn (see e.g. BGT
1.2.4 for a simple example, involving a Hamel basis). De Bruijn�s ongoing
interest in Tauberian theory is seen in his paper with van der Meiden [dBvM]
on Gelfand theory (this paper also illustrates his interest in where one needs
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Zorn�s lemma). Tauberian theory was transformed in 1932 by Wiener, who
used general kernels. One of the �rst triumphs of modern functional as dis-
tinct from classical analysis was Gelfand�s use of his theory to both extend
and simplify the Wiener Tauberian theory.
3. Extreme-value theory. While regular variation entered probability theory
in the context of addition of random variables (BGT 8.3-4), it is also crucially
useful for maxima of random variables �the context of extreme-value theory
(EVT �BGT 8.13). Early work here was by Gnedenko in 1943 (see [Bin4]
for details and references). The subject became of pressing concern to the
entire Netherlands, in particular to its mathematical community, following
the disastrous �oods of 31 January �1 February 19533. As a result, a num-
ber of mathematicians from the Netherlands have worked on EVT, including
Balkema and de Haan already cited. Applications to EVT, particularly �ood
heights and �nance [BalE], have been important stimuli to the development
of regular variation in many dimensions.
4. Analytic sets. That analytic sets are relevant to the category and mea-
sure aspects of regular variation is suggested by Nikodym�s theorem ([Rog,
1.2.9]). This concerns preservation of the Baire property and measurabil-
ity under the Souslin operation. It would take us too far a�eld to discuss
this important matter more fully here; for details and references, we refer to
[BinO10], [BinO11], [Ost3], [Ost4].
5. Steinhaus� Theorem and paradoxical decompositions. We noted in §8
Solecki�s results on the Steinhaus property in groups G that are amenable
at 1. The theory of amenability may be re-cast in the language of paradoxi-
cal decompositions of Banach-Tarski type: non-amenability is paradoxicality.
The crux is group-theoretic, and concerns the presence or absence of a free
subgroup in G on two generators ([Pat, 0.6]). See [W] for background and
Solecki [Sol] for detailed statements (Th. 1, Cor. 2 for positive results, Th.
3 for negative results).
6. Automatic continuity. The Characterization Theorem of regular varia-
tion (BGT, 1.4.1) mentioned in §1 identi�es the limit in (RV+), which is a
homomorphism, by means of its continuity. Relevant here are automatic con-
tinuity theorems, for which see e.g. [BinO10], Ho¤mann-Jørgensen�s article
[Rog, 3.2], and [Ros].

3The �rst author was a schoolboy of seven, and remembers vividly the shock caused
by the heavy loss of life. The �oods in the UK were worst in Essex; a full account is given
in [Gri]. They were much worse in the Netherlands.
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7. Further results.
(i) Beurling slow and regular variation. There is an interesting complement
to the theory of regular variation (Karamata and de Haan theory, in the
terminology of BGT), introduced by Beurling (in unpublished lectures), in
connection with Tauberian theory. See BGT §2.11 and 3.10 for the theory
up to 1989, [BinO11] and [BinO12] for recent results. The approach adopted
there is in terms of �asymptotic group actions�, and �asymptotic cocycles�, cf.
[Ost2].
(ii) Boundedness. There are versions of many results in regular variation
(�O-versions�) involving boundedness rather than convergence; see e.g. BGT
Ch. 2. In more recent work, the context of regular variation has been greatly
generalized (beyond its original setting of real analysis), e.g. [Ost2]. For
background and detail here, see e.g. [BinO6] and references there.
(iii) Regular variation of measures. One of the motivations for extending
regular variation beyond one dimension comes from extreme-value theory, as
above. For background and detail here, see e.g. [BinO3] and references there.
8. Historical background. For reasons of space, we must refer elsewhere to
the extensive and interesting history of regular variation. For a bibliography
up to 1989, see BGT; for historical remarks see e.g. [Bin1], [Bin2] and refer-
ences there.
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Postscript
The �rst author was fortunate to hear a course of lectures by N. G. de

Bruijn at the St. Andrews Colloquium in 1968, when he was a second-year
research student. Both authors have been in�uenced by his work, and take
pleasure in dedicating this paper to his memory.
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